Haematological Profiles and Histological Investigations of Two Freshwater Fishes: Nile Tilapia (Oreochromis niloticus) and Hybrid Catfish (Clarias macrocephalus x Clarias gariepinus)

Duangkamol Kobkanta¹, Wararut Buncharoen², Supap Saenphet²*¹

¹The Royal Project Foundation, Muang Chiang Mai, Chiang Mai Province, 50200, Thailand
²Department of Biology, Faculty of Science, Chiang Mai University, Muang Chiang Mai, Chiang Mai Province, 50200, Thailand

*Corresponding author’s e-mail address: bigsu.cmu@gmail.com (S. Saenphet)

INTRODUCTION

Water pollution caused by rapid growth of industrialization and agriculturalization is a universally serious problem. Contamination in water bodies has created adverse effects on aquatic fauna, especially different species of fishes. Freshwater fishes can easily contact with pollution in their habitats either via respiratory system or through ingestion of small aquatic organisms. Moreover, contaminants can be absorbed into blood vessels in the gills, because fish gills are in direct contact with the water medium [1]. Exposure to toxic compounds in a short period of time can cause toxic accumulations in fish bodies and consequently produce deleterious effects. Although different fish species can tolerate and adapt their biochemical and physiological mechanisms against the adverse conditions, chronic exposures can induce pathological changes and subsequently cause mortality. Thereby, toxicological research is being done to monitor physiological and pathological changes in a wide range of teleosts in polluted environments.

Unfavorable alterations in the circulatory system or in the other organ systems can reflect the qualities of the water and health status of fishes. Investigations of haematological parameters in a number of fish species under different environmental conditions such as pollutants, transportation, hypoxia, parasitic infection and acclimation have been performed either to understand physiological responses or to detect pathological changes. Furthermore, blood parameters can be used as an indicator for nutritional and overall health status of fish [2-4]. The levels of haemoglobin and haematocrit as well as erythrocyte sizes are significant parameters for studying the transport capacity, availability and removal rate of oxygen in fish tissues [5]. The harmful impacts of pesticide contamination in rivers have been clearly noted in the blood of a variety of fishes. A recent report indicated that a decrease in numbers of erythrocytes and an increase in numbers of leucocytes were found in Mahseer fish (Tor putitora) exposed to cypermethrin, a synthetic pyrethroid insecticide [6]. Similar to cypermethrin,
deltamethrin, a pyrethroidal pesticide showed haemotoxicity in freshwater fish (*Channa punctatus*) cultured in the contaminated river for 45 days. The decreases in haemoglobin content, total erythrocyte count and pack cell volume as well as an elevation of leukocyte count were also markedly noted [7]. These changes reflect the deleterious effects of pesticide contaminations on the immune system of fish. Besides the harmful effects of pesticides, the impacts of malnutrition, acclimation, heavy metals, seasonal change and parasitic infection on fish bloods have been documented [8-10]. In addition, there is evidence that pollutants or hazardous chemicals can also induce mutations in a variety of fish species by altering haematopoesis. The micronuclei and nuclear abnormalities have been detected in teleosts such as barbel, rainbow trout, brown trout, European eel and European minnow exposed to natural polluted water and mutagenic agents [11-14]. Therefore, micronucleus test can be used to assess the risk to fishes from hazardous compounds.

Besides being responsible for detoxification and homeostasis, the liver and kidneys can accumulate any toxic compounds and exhibit degenerations [15, 16]. Thus, the hepato-renal index is widely accepted as an effective biological indicator for determining the effects of stress in contaminated areas on freshwater fishes. Alterations in enzyme activities as well as histopathological changes can be found in these organs after toxic exposure [17, 18]. An accumulation of copper in bufferfish (*Poronotus triacanthus*) has been documented in various organs. A highest level of copper was found in liver, followed by kidney, gills and muscular tissues. Swollen mitochondria, leukocyte infiltrations, pyknotic nuclei, vacuolization, elevations in size and numbers of lipid droplets were represented in their hepatic tissues. Furthermore, dilations of endoplasmic reticulum and cell necrosis were found in proximal tubules. These severe damages could found in bufferfish after seven days of exposure to copper [19]. Similarly, *Anabas testudineus* Bloch fishes inhabiting in unused lignite mine suffered from their pathological changes. The histopathological findings revealed deterioration and telangiectasis of the gill filaments. Haemorrhage, blood congestion and necrotic cells were found in their hepatic tissues. Additionally, epithelial hypertrophy and aneurysms of renal tubules as well as shrinkage of glomerulus were found in the renal tissues [20]. These alterations were a consequence of low pH values and the presence of residue metals in the mine. Additionally, hepato-renal damages in fishes produced by stress conditions such as heavy metals, pesticides and toxic chemicals have been previously documented [21-24].

Taken together, investigations of haematological profiles combined with histology of vital organs could indicate physiological and health status of fishes to identify unfavorable conditions that cause stress, especially in fisheries. This study, therefore, evaluated haematological profiles and histological changes in hybrid catfish (*Clarias macrocephalus x Clarias gariepinus*) and Nile tilapia (*Oreochromis niloticus*) which are economically important fishes in Thailand. The results obtained from our study provide a basic knowledge for application in monitoring quality of the environment.

METHODOLOGY

Fish samples

Ten adults of *Oreochromis niloticus* (20-25 cm length) and ten adults of *Clarias macrocephalus x Clarias gariepinus* (25-30 cm length) were randomly purchased from a local market from Muang Chiang Mai, Chiang Mai Province, Thailand. They were quickly shifted to a laboratory and kept in glass aquaria with constant aeration and non-chlorinated water prior to collecting the samples. Blood samplings were done within the first three hours of transportation.

Collections of blood and tissue samples

A blood sample was collected from each fish by caudal vein puncture technique [25]. The blood samples were transferred into tubes containing an anticoagulant agent, ethylene diamine tetraacetic acid (EDTA) for haematological and micronucleus analysis. After blood collection, all fishes were sacrificed and their liver and kidneys were quickly dissected. These two organs were fixed in Bouin’s solution for at least 24 h for histological examinations.

Haematological analysis

The anticoagulated bloods were mixed with Dacie’s solution and Gower’s solution for determining total red blood cells (RBCs) and total white blood cells (WBCs) counts respectively. The blood mixtures were loaded into Neubauer haematocytometer chambers. For investigating differential white blood cell counts, a drop of a blood mixture was placed on a clean slide and the mixture was air-dried. After air drying, the slides were stained with Giemsa stain and dried in the air for observation under a microscope. For investigating differential white blood cell counts, a drop of a blood sample from each fish was smeared on a cleaned microscopic slide. Three slides per fish were performed. All slides were dried at room temperature. All dried slides were fixed in absolute methanol for 10 min and stained with Giemsa-Wright stain. A total of 200 leukocytes per slide were counted to analyse the relative numbers of the blood cell types including lymphocyte, neutrophil, monocyte, eosinophil and basophil [30].

Investigations of micronucleus

To investigate micronucleus in peripheral bloods, a total of three smear slides were prepared as described above. A total of 5,000 erythrocytes per slide were examined to classify micronuclei,
immature erythrocyte and erythrocytic nuclear abnormalities under an Olympus BX41 light microscope [31]. Chromatic bodies with small, circular or oval patterns indicated the occurrences of micronucleus. The presences of binuclei, blebbed nuclei, lobed nuclei, kidney-shape nuclei and notched nuclei were considered as erythrocytic nuclear abnormalities [32]. The percentages of micronuclei, immature erythrocyte and nuclear abnormal found in each fish species were calculated.

Histological examinations

The hepatic and renal tissues of fishes were fixed in Bouin’s solution. They were dehydrated through the increasing grades of alcohol and cleared in xylene. The 6-µm thick sections were prepared after embedding. All sections were stained with haematoxylin and eosin (H & E) and permanently mounted. The stained slides of livers and kidneys of hybrid catfish and Nile tilapia were comparatively examined for their histoarchitecture. Histological changes in the permanent slides were also examined using semiquantitatively scoring methods [33]. The degrees of alterations were scored ranging from - to +++ depending on the severities. No occurrence of histological changes (-), less than 30 % (+), 30 - 70 % (+++) and more than 70 % of occurrence. Micrographs of livers and kidneys tissues were taken using a light microscope (Olympus BX41) coupled with a camera.

RESULTS

Haematological parameters

Table 1 summarizes haematological profiles of hybrid catfish and Nile tilapia. We found that haematological values including Hb, Hct, MCV and MCH of Nile tilapia were higher than those in hybrid catfish. In contrast, RBCs, MCHC and WBCs in hybrid catfish was more than in Nile tilapia. Table 1 Hematological parameters of hybrid catfish and Nile tilapia.

<table>
<thead>
<tr>
<th>Haematological indices</th>
<th>Fish species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hybrid catfish</td>
</tr>
<tr>
<td>RBCs (x 10⁹ cells/ml)</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>36.0 ± 6.9</td>
</tr>
<tr>
<td>Haemoglobin (g/dl)</td>
<td>8.8 ± 1.2</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>103.0 ± 3.7</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>27.0 ± 3.9</td>
</tr>
<tr>
<td>MCHC (g/dl)</td>
<td>25.0 ± 5.1</td>
</tr>
<tr>
<td>WBCs (x10⁶ cells/ml)</td>
<td>19.0 ± 1.6</td>
</tr>
<tr>
<td>Neutrophil (%)</td>
<td>72.0 ± 8.9</td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>14.0 ± 8.6</td>
</tr>
<tr>
<td>Monocyte (%)</td>
<td>12.0 ± 5.8</td>
</tr>
<tr>
<td>Eosinophil (%)</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Basophil (%)</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.D. of ten fishes each.

erthrocyte and leucocytes are shown in Fig. 1. The mature RBCs were the predominant cell types found in blood smears of both species. However, RBC size of hybrid catfish seem to smaller than in Nile tilapia. Catfish RBC were spherical cell and nucleus while Nile tilapia had ellipsoidal cell with oval nucleus. For differential count, four types of leucocytes including neutrophil, monocyte, lymphocyte and eosinophil were found. Among them, neutrophils followed by lymphocytes were the most frequent cells recorded in both fish species. High percentages of all types of WBC were recorded in Nile tilapia, except for neutrophil. A few of eosinophil was found in Nile tilapia. On the other hand, eosinophil and basophil were not observed in hybrid catfish.

Micronucleus indices

Fig. 2 illustrates details of various abnormalities in mature RBC of fishes. The small circular or oval particles with variable sizes were
noted in both hybrid catfish and Nile tilapia. The micronuclei was located near or far to the main nucleus in the periphery of the cells. The presences of the larger cell than the mature RBC with irregular shapes of the nucleus indicate immature erythrocytes. A nuclear abnormal, lobed nuclei was observed in hybrid catfish (Fig. 2 (C)) while kidney-shaped nuclei were found in peripheral bloods of Nile tilapia (Fig. 2 (F)). Table 2 displays the numbers of micronucleus in RBC. It was found that the high frequencies of micronuclei, immature erythrocyte and erythrocytic nuclear abnormality were noted in Nile tilapia when compared to catfish.

Histological examinations

Histological observations found that hepatic tissues of both fish species consisted of hepatic cords with a simple layer of hepatocytes. Hepatocytes were polyhedral with a rounded nuclei. Hepatic cords were separated by irregular shapes of hepatic sinusoids. The sinusoidal tract were converged to the blood vessels of central lobular vein. In addition, pancreatic tissues was embedded in the liver Nile tilapia. Histopathologically, alterations in liver tissues of hybrid catfish were more severe than in Nile tilapia [Table 3]. Vacuolated hepatocytes with irregular arrangements of hepatic cords were markedly seen in catfish’s liver [Fig. 3]. In liver tissues of Nile tilapia, blood congestion in their hepatic sinusoids, aggregations of Kupffer cells, absence of hepatic nuclei, necrotic cells and vacuolization were slightly seen [Fig. 4].

In renal tissues, histoarchitecture in all fishes consisted of nephron with glomeruli and Bowman’s capsule and renal tubule with different sizes. Most of tubular epithelia were cuboidal cells. A large area of haemapoietic tissues were seen. Histopathological observations showed that severe alterations were found in renal tissues of hybrid catfish when compared to Nile tilapia. Histological changes mildly found in both fish species were shrunken glomerulus, detachment of tubular epithelium, leukocyte infiltration and blood congestions.
with blood parameters can provide the knowledge for the identification of conditions that cause stress or mortality in fisheries. In this study, the parameters of erythrocytes including Hct, Hb, MCV and MCH in Nile tilapia were higher than those in hybrid catfish. In contrast, the highest frequencies of RBCs, MCHC and WBCs were noted in hybrid catfish. This indicates that hybrid catfish required more of oxygen uptake than Nile tilapia in the stress conditions caused by hypoxia [34]. It is possible that they can survive under low oxygen levels by either elevating ventilation rates in acute hypoxic condition or increasing rates of erythropoiesis in chronic hypoxia [35]. On the other hand, hybrid catfish can tolerate and adapt themselves to survive in hypoxic environments by changing their ventilations, oxygen-sensitive chemoreceptors and also autonomic control of the heart as evidenced in channel catfish [36].

The results of haematology from our study were similar to a previous study which showed that higher numbers of RBCs were found in a variety of the Clarias genus than in O. niloticus [37]. Interestingly, catfish had WBCs and neutrophil more than in Nile tilapia. On the other hand, the most frequent of lymphocyte and monocyte were found in Nile tilapia. These indicate signs of inflammations which are the immune responses of fishes against infections. Basophil was not observed in either fishes, while few eosinophils were noted in Nile tilapia. This confirms the reports on different teleosts in which basophil was not recorded in plaice, rainbow, salmon pink and brown trout. Other studies revealed that O. niloticus exposed to formalin at 1.56 mg/l suffered from hypoxia [38] and cement powder at 1.23-19.60 mg/l also produced haematological changes in this fish species [39]. Interestingly, acute exposures to hazardous agents such as chlopyrifos and mercury at low concentrations did not alter any haematological parameters in O. niloticus [10, 40]. Therefore, we suggest that the haematological parameters of hybrid catfish and Nile tilapia investigated in this study were in reference ranges when compared to healthy fishes [37]. Moreover, variations in their blood parameters may be the results of the homeostasis and adaptation to their environments.

Micronuclei are extra-nuclear bodies which are the result of fragmented chromosomes during cell division. They are found in cytoplasmic periphery near or far from the main nucleus. Frequencies of micronuclei in mature RBC of fish can be used as an indicator for detecting a number of mutagenic agents [41]. Normally, immature erythrocytes are found only in hematopoietic organs. Thereby, an occurrence of immature erythrocytes in peripheral blood indicates the physiological responses of fish against stresses. This study revealed that Nile tilapia had higher frequencies of micronuclei, immature erythrocytes and nuclear abnormalities in peripheral blood than in hybrid catfish. These results confirm that Nile tilapia are more sensitive than hybrid catfish. However, the numbers of nuclear abnormalities from our investigation were lower than in the previous report [42]. This implies that no pollutants or stressors in their habitats produced genetic damage in either fishes. In contrast to our study, cyclophosphamide and mitomycin C significantly increased the frequencies of micronuclei in three fish species—Tilapia rendalli, O. niloticus and Cyprinus carpio [43]. Additionally, micronuclei and blebbed and lobed nuclei in erythrocytes were clearly observed in Nile tilapia exposed to petroleum oils and chromium [42]. Immature erythrocytes observed in a wide range of teleosts demonstrate hypoxic conditions. This is likely due to the fishes having released immature
erythrocytes from their hematopoietic sites into their peripheral blood for enhancing oxygen transport.

The liver is the largest organ in the body associated with digestion and metabolism as well as protein synthesis, storage, bile secretion and detoxification. Therefore, injuries to hepatic tissues can induce liver dysfunctions. In this study, both hybrid catfish and Nile tilapia revealed histological alterations in their hepatic tissues. Blood congestion, leucocyte infiltration, vacuolization and pyknotic cells were seen in both fishes. Blood congestion in hepatic sinusoids demonstrates hyperemia secondary to the inflammations. The absence of hepatic nuclei, pyknotic cells and vacuolization are likely due to hepatocyte damage induced by harmful contaminants. Likewise, Nile tilapia treated with copper and endosulfan, an herbicide, displayed vacuolization, melanomacrophage aggregation, cell necrosis and edema in hepatic tissues [44].

The kidney is important in the excretory system and in haematopoiesis of fishes. The detachment of tubular epithelium as well as shrunken glomeruli and mononuclear infiltrations observed in renal tissues of both fish species indicate the reductions in renal function. This implies that contaminations of pollutants in blood circulation alter cellular functions and degrade renal capacity in excretion. Leukocyte infiltrations also reflect the immune response of fish against contaminants. Previously, hypertrophy of renal tubules, edema, blood congestion and glomerulonephritis were seen in Nile tilapia treated with 5 mg/l of ammonia [45]. Furthermore, the pesticide chlorpyrifos also damaged kidney tissues of catfish (Heteropneustes fossilis) by producing shrinkage of glomerulus, vacuolization and tubular cell necrosis [46]. However, histopathological alterations in both Nile tilapia and hybrid catfish observed in this study were mild inflammations when compared to the literature described above. These changes are likely due to the impact of the restricted environment with low oxygen levels more than the effects of hazardous agents. The results obtained from our study can provide basic data for application in research of environmental pollution.

CONCLUSION

Taken together, it can be concluded that Nile tilapia had higher levels of red blood cell indices as well as nuclear abnormalities than hybrid catfish. On the other hand, the levels of RBCs, WBCs and MCHC in hybrid catfish were higher than in Nile tilapia. A higher frequency of micronuclei, immature erythrocytes and abnormal nuclei was found in the peripheral blood of Nile tilapia. However, these parameters were normal according to reference standards. Although histopathological changes were observed in liver and kidney tissues of both fish species, the alterations were slight. We expect that eventually the changes in haematological values and histopathology of these two fishes can be used for monitoring the quality of river environments in further studies.

ACKNOWLEDGEMENTS

The authors are grateful to the Industrial and Research Projects for undergraduate students, Thailand Research Fund for financial support. Also thanks to Department of Biology, Faculty of Science, Chiang Mai University for supporting and providing facilities.
REFERENCES

6. R. Ullah, A. Zuberi, M. Naem, S. Ullah, Toxicity to hematology and morphology of liver, brain and gills during acute exposure of Mahseer (Tor putitora) to cypermethrin, Int. J. Agric. Biol., 2015, 17, 199-204.

19. W. Jiaungkoorskul, S. Sahaphong, N. Kangwanransang, Toxicity of copper in butterflyfish (Poronotus triacanthus); tissues accumulation and ultrastructural changes, Environ. Toxicol., 2007, 22, 92-100.

